Full Name	Teacher	PeriodD	ate	
WORK and	MACHINES 1	NOTES		
1. Work is done when a force that is applied	to an object MOV	ES that object.		
2. According to that definition, put an X in tSitting and looking at a compu		ork is done.		
Applying a force to the keys on a keyboard causing them to move				
Sitting in the car on the way to school				
The car moving on the way to	o school			
3. You have to exert a force and move some as doing work.	thing in the SAMI	direction as the fo	orce to qualify	
4. Work is calculated by using the formula:	FORCE x DISTA	NCE		
4a. The unit for work is the JOULE				
5. The HEAVIER the object the more work needed to move the object the same distance.				
6. If you try to move the same object a longer	er distance, more <u>V</u>	VORK is needed.	011	
7. A SIMPLE MACHINE is a device that leasier or more effective.	has one or two part	ts which you can u	se to make work	
8. A machine does NOT decrease the amount	nt of work that is d	one, but makes the	e work easier by:	

-Increasing the amount of **FORCE** exerted to move the object, OR

-Increasing the **DISTANCE** over which you exert the force, OR

-CHANGING the **DIRECTION** in which you exert your force.

- 9. The force you apply to the simple machine is called the **INPUT** force.
- 10. The machine does work by exerting a force on the object over a distance. The force exerted by the machine on the object to be moved is the **OUTPUT** force.
- 11. A machine's **MECHANICAL ADVANTAGE** is a ratio of the output force to the input force. It indicates how much the simple machine changes the input force (the force you apply to it.)

Mechanical Advantage = Output Force INPUT Force

Full Name	Teacher	Period	Date

12. For a machine that increases the force, the mechanical advantage is **GREATER** than 1. (ex: can opener)

MECHANICAL ADVANTAGE

- 13. For a machine that increases distance, the output force is <u>LESS</u> than 1, which means that a lesser force is exerted by the machine, but over a longer distance.(ex: bike gears)
- 14. If only the direction changes, the input force will be the **SAME** as the output force. (ex: raising a sail)
- 15. Some machines allow you to use **LESS** force over a greater distance, more force over a **SHORTER** distance, or the same force in a **DIFFERENT** direction.

- 16. In the end, you do as much work with the machine as you do without the machine, but the work is **EASIER**.
- 17. There are **SIX** types of machines that make work easier. They are called

SIMPLE Machines. The six simple machines are:

WEDGE WHEEL & AXLE SCREW LEVER

* INCLINED PLANE * RAMP

*Note: These two simple machines are our focus this year.

18. Read pages 194 – 198 in your textbook. Fill in the graphic organizer on page 198.

